LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2010

MT 2501/ MT 2500 - ALGEBRA, ANAL.GEO \& CALCULUS - II

Date \& Time: 20/04/2010 / 1:00-4:00

$\underline{\text { PART - A }}$

Answer ALL questions.

1. Evaluate $\int \frac{d x}{(x+2)(x+1)}$.
2. If f is an odd function show that $\int_{-a}^{a} f(x) d x=0$.
3. Solve $x \sqrt{1+y^{2}}+y \sqrt{1+x^{2}} \frac{d y}{d x}=0$.
4. Solve $\left(D^{2}+4 D+4\right) y=0$.
5. If $\sum_{i=1}^{\infty} u_{i}$ is convergent, show that $\lim _{n \rightarrow \infty} u_{n}=0$.
6. State Cauchy's root test.
7. Find the coefficient of x^{n} in the expansion of $(3+2 x) e^{-3 x}$.
8. Write the expansion of $(1-x)^{-2}$.
9. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$.
10. Find the radius of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 z+4 y+2 z-15=0$.

PART - B

Answer any FIVE questions
11. Evaluate $\int \frac{x+\sin x}{1+\cos x} d x$.
12. Solve $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$.
13. Solve $\left(D^{2}+2 D+5\right) y=x e^{x}$.
14. Test the convergence of $\sum_{n=0}^{\infty} \frac{n^{3}+1}{2^{n}+1}$.
15. Using Raabe's test, examine the convergence of $\frac{1^{2}}{2^{2}}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots$
16. For sufficiently large values of x, show that $\sqrt{x^{2}+16}-\sqrt{x^{2}-9}=\frac{7}{2 x}$ approximately.
17. Sum the series $\frac{5}{1!}+\frac{7}{3!}+\frac{9}{5!}+\cdots$
18. Find the image of the point $(1,-2,3)$ in the plane $2 x-3 y+2 z+3=0$.

PART - C

Answer any TWO questions

($2 \times 20=40$ marks $)$

19. (a) If $I_{m, n}=\int \sin ^{m} x \cos ^{n} x d x$ ($m, \quad n$ being positive integers), show that $(m+n) I_{m, n}=\cos ^{n-1} x+(n-1) I_{m \cdot n-2}$ and hence evaluate $\int \sin ^{6} x \cos ^{3} x d x$.
(b) Find the length of one loop of the curve $3 a y^{2}=x(x-a)^{2}$.
20. (a) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x)$.
(b) Examine the convergence of $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{1 / 2} x^{n}$.
21. (a) Sum the series to infinity $\frac{1 \cdot 4}{5 \cdot 10}+\frac{1 \cdot 4 \cdot 7}{5 \cdot 10 \cdot 15}+\cdots$.
(b) Sum the series to infinity $\frac{5}{1 \cdot 2 \cdot 3}+\frac{7}{3 \cdot 4 \cdot 5}+\frac{9}{5 \cdot 6 \cdot 7}+\cdots$.
22. (a) Find the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} ; \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$ and the equations of the Line of shortest distance.
(b) Find the equation of the sphere through the four points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
